Unit 4

Linear Relations and Function

[^0]
Lesson 1 - Graphs of Relations

Example 1:

$$
\begin{gathered}
S=\frac{d}{t} \mathrm{~m} \\
\frac{3}{3}=1 \mathrm{~m} / \mathrm{s} \\
2 \mathrm{~m} \\
0.4 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Jennifer walks her dog with a retractable leash. She stops for a rest on \$park bench while she continues to hold the end of the leash. The graph shows the distance the dog is away from the bench. Describe what the dog is doing
$A \rightarrow B$ The dog is Sitting next to Jennifer for 3 seconds
$B \rightarrow C$ The dog walks away at $\frac{3}{3}=1 \mathrm{~m} / \mathrm{s}$.
$\rightarrow \rightarrow$ The dog sits, speed $\frac{0}{5}=0 \mathrm{~m} / \mathrm{s}$, time 5 s
$D \rightarrow E$ The dog is retracted, speed $=\frac{6 \mathrm{~m}}{2 \mathrm{sec}}=3 \mathrm{~m} / \mathrm{sec}$
$E \rightarrow F$ The dog steps for 2 seconds
$F \rightarrow G$ the dog walks back to owner at $0.4 \mathrm{~m} / \mathrm{s}$
Example 2; Which graph hest represents a person's height as the person ages?

Example 3:
Frank leaves his home and walks 1 km to the store. After buying a drink, he slowly jogs the three kms to his friend's house, which is on the opposite direction of his house. Frank visits with his
friend for a while and then runs directly home. Using the distances given, draw
(a) Distance time graph that shows Franks distance from home. Explain each section of the graph.
(b) Distance time graph that shows Franks distance from the store
(c) Total distance travelled versus time.

Identifying Qualitative Graphs

Indicate which graph matches the statement

1. A train pulls into a station and lets off its passengers.

c)

d)

2. A man takes a ride on a ferris wheel.

3. A child swings on a swing.

4. A

b)

c)

d)

5. You pour some cold water from the refrigerator into a glass, but forget to drink it. As the water sits there, its temperature depends on the number of minutes that have passed since you poured it.

6. You pour some popcorn into a popper and turn it on. The number of pops per second depends on how long the popper has been turned on.

7. You fill up your car's gas tank and start driving The amount of gas you have left in the tank depends on how far you have driven.

8. Dan Druff's age and the number of hairs he has growing on his head are related.

9. You climb to the top of the 190 meter tall Towe of the Americas and drop your algèbra book off. The distance the book is above the ground depends on the number of seconds that have passed since you dropped it.

10. The grade you could make on a particular test depends upon how long you study for it.

Lesson 2 - Linear Relations

Important Terms
Relaton
: A relationship between two quantities. This relationship can be represented in words, as an equation, as ordered pairs, as a table of values or as a graph. $\frac{\text { Lineor Rela tion Selation that forms a straight line when data is plott }}{\text { The rate of change is constant. Change in y and change in } x \text { is constant. }}$

Non-linear relation: A relation that does not form a straight line when the data is plotted on the graph. Change in x and/or change in y values between consecutive points is not constant.
Discrete cannot be points between the points. Such as plotting cost per a person. It is not possible to pay for part of a person.
Continuous data: Data values on a graph that are connected between points. These values are measurements such as distance, time or volume. There will be points between points.

Independentvariable: The variable for which values are chosen. The input value or horizontal value (x value) on a graph.

Dependeut variable: The variables whose values depend on what is done to the independent variable. The output or variable always graphed on the vertical axis (y value)

Example 1:

List 5 ways you can write a relationship between 2 quantities.
table of values, equation, ordered pairs
(coordinates)
graph, words
Example 2:

Denise walks to school at a constant speed. She is able to do this because there is no traffic
on her route. She has found that she walks at a rate of $1.5 \mathrm{~m} / \mathrm{s}$. Her walk to school takes her
15 minutes.
(a) Identify the relationship as linear or a non-linear. Explain how you know. $d=J \circ t$ Linear
she walks at a constant rate (speed) so

$$
\begin{aligned}
& \text { She walks at a constant race speed so } \\
& \text { change in distance is always } 1.5 \mathrm{~m} r \text { chare in time is } 1 \text { fec }
\end{aligned}
$$

(b) Create a variable to represent each quantity in the relation. Which is the independent

$$
\text { variable? Let } \underline{d}=\text { distance }_{(m)} \text {; Let } t=\text { time (min) }
$$

(c) Create a table of values for this relation. What are the appropriate values for the $1 \mathrm{~min}=60 \mathrm{sec}$ $t\left(\begin{array}{ll}\text { time } \\ \text { independent variable? } \\ 3 \text { min intervals }\end{array} \min \frac{1.5 \mathrm{~m}}{1 \mathrm{sec}}=\frac{90 \mathrm{~m}}{60 \mathrm{sec}}\right.$
$d=90(6)$
$d=540 \mathrm{~m}$

Total time

$$
d=90(15)
$$

$$
\frac{90 \mathrm{~m}}{\mathrm{msio}}, 15 \mathrm{~min}
$$

Example 4:

Determine whether each relation is linear. Explain why or why not.
a) The relationship between the cost to rent a banquet hall and the number of people
attending the banquet, if the hall charges $\$ 150$ plus $\$ 6$ for each person who attends
b) The relation described by the equation $\mathrm{x}^{2}+\mathrm{y}^{2}=16$
c) The relation described by the set of ordered pairs $\{(10,6),(15,-2),(20,-10),(25,-18)$, $(30,-26)$ \}
d) The relation described by the set of ordered pairs $\{(-3,-4),(-1,2),(1,8),(3,14),(5,18)\} \quad \Delta x=+2$
e) The relation described by the set of ordered pairs $\{(-5,10),(0,7),(5,4),(10,1),(20,-5)\}$
a) $C=150+6 P \xrightarrow{\$ 1} \rightarrow$ rate per person is aluaces $\#_{6}$ the relation is limes.
b) $x^{2}+y^{2}=16$ when plotted creates a circle/or 4 degree >1 than line will curve

$$
\begin{aligned}
& \text { So not liveac }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Both } \Delta x \text { ? } \Delta y \text { ane constant the } \\
\text { rate of change } \rightarrow \text { slope is constant } \\
\text { thenlinear }
\end{array} \\
& =2
\end{aligned}
$$

c)

Example 5:

$$
\begin{aligned}
& =2
\end{aligned}
$$

$m=\frac{\Delta y}{\Delta x}=\frac{-6}{10}=\frac{-3}{5}$
$m=\frac{\Delta y}{\Delta x}=\frac{-3}{5} \quad$ slope
Slope is constant slipped pith (15,-2) Reflection is linear.

Delview dance tickets are $\$ 6$ per ticket. Is the relation discrete or continuous? Does the data represent a linear or non-linear relationship between the number of tickets purchased
and the cost of the tickets? Represent the relationship all 5 ways.
Let che the cost (\$) γ
ut n be the tod tickets $C=6 n$

n	c
0	0
4	24
8	48
10	60

4	24
8	48
10	60

Assignment: Pg. 218
+6.2 Extra Practice Sheet

\# $1-4,7-9,12$

Quiz on 6.1 and 6.2 on \qquad

Section 6.2 Extra Practice

1. Convert each relation from its curren
representation to a set of ordered pairs and

to a graph.

a) | x | y |
| :---: | :---: |
| 4 | -2 |
| 1 | -1 |
| 0 | 0 |
| 1 | 1 |
| 4 | 2 |

b) $y=2 x-3$
2. Convert each relation from its current representation to a table of values and to a) ... $(-1,-2),(0,0),(1,2),(2,4)$,

y)					
15						
${ }^{12}$						
			-			
4	4					
,	,					
4						
	-	-				
0	0			4		\times

3. Determine whether each relation is linear or non-linear. Explain your decision.
a) $y=\frac{9}{5} x+32$
b)

\boldsymbol{x}	\boldsymbol{y}
1	1
2	1
3	2
4	3
5	5

c) $(-5,0),(-2,1),(1,2),(4,3),(7,4)$

a) Is this a linear or non-linear relationship? Explain how you know.
b) Assign a variable to represent each quantity in the relation. Which variable is
the dependent variable and which is the independent variable?

5. The table of values shows the cost of movie tickets at a local theatre.

Nunber of Tickets	Cost (
1	12
2	24
3	36
4	48

6. A white-tailed deer can sprint up to $48 \mathrm{~km} / \mathrm{h}$. One deer is walking at $8 \mathrm{~km} / \mathrm{h}$. Consider the relationship between the total distance, in kilometres, travelled by this deer and time in hours.
a) Assign a variable to represent each quantity in the relation. Identify the
dependent variable and the independen variable.
b) Assume the deer walks for 3 h without stopping. Create a table of values for this
c) Graph the relation.
J) Is the relation lineer or non-linean? Explain.
e) Is the relation continuous or discrete?
Explain.

Warm-up:

1. Would the graph of an infant's height versus their age be continuous or discrete? Explain.

2. Jane goes to the mall to get her best friend a birthday gift. It took her 30 minutes to get to the mall from her home driving $50 \mathrm{~km} / \mathrm{hr}$. She shops for 2 hours and then returns home in 20 minutes driving $60 \mathrm{~km} / \mathrm{hr}$. Draw the following graphs:
(a) Distance travelled versus time

(b) Distance from home versus time

3. Determine which set of numbers is linear: A: $\{(-2,2),(-1,6),(0,0),(1,2),(2,6)\}$ B: $\{(-3,5),(-2,-3),(-1,-1),(0,1),(1,3),(2,5)\}$
4. The cost to make colour prints at staples is $\$ 2$ per a copy plus a $\$ 1$ service charge

Define the independent and dependent variable in this relation.
\qquad $=\square$, the independent variable
Let -_ $=$ \qquad ,the dependent variable

Create an equation showing the relationship between cost and the number of prints using the defined variables. \qquad

Is this relation continuous or discrete? Explain.

Lesson 3 - Functions

Definition:
Function - a rule that gives a single output number for every valid input number.

Example 1:
Determine if the following is a function or not:
(a) $\quad\{(2,3),(3,4),(2,5),(5,6),(6,7)\}$
(b)

$$
\begin{array}{l|l}
x & y \\
\hline 2 & 3 \\
3 & 4 \\
2 & \text { This is rot } \\
2 & 5 \\
5 & 6 \\
6 & \text { becauction } \\
6 & 7 \quad x=2 \quad y=3,5 \\
\therefore \text { mone than ove } \\
\text { ontpet In given } \\
\text { inpect. }
\end{array}
$$

(c)

Yes a furetion b / c
the graph passes vertical
lime test \rightarrow anly are value I Y for each value of x
(d)

Not a function \rightarrow doesuat poss vertical line test
as many inputs (x) have
2 mitperts

THE VERTICAL LINE TEST ALSO HELPS TO DETERMINE FUNCTIONS

Definition:
Function Notation:

- To represent functions, we use symbols; $\quad \mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x})$
- $f(x)$ reads " f of x ". It means the equation is a function that has x as the input variable.
- $f(x)$ is another name for y. For example: $f(x)=3 x+1$ is the same as $y=3 x+1$.
- Typically we are given a numerical value to SUBSTITUTE for x in the function.

Example 2:

a) If $f(x)=-2 x+1$, find the value of x if:

$$
\begin{array}{ll}
f(x)=12 & y=12 \\
f(x)=-2 x+1 & \text { find } x=?
\end{array}
$$

(a) $f(x)=12$ means
$\begin{aligned} & \frac{1}{f(x)}==-2 x+ \\ &-20=-2 x+1 \\ &-1\end{aligned}$ $\begin{array}{ll}12=-2 x+1 & -1 \\ -1 & -11 \\ \frac{11}{2}=-2 x & x=-5 \frac{1}{2}\end{array}$
b) Given $f(x)=3 x^{2}-x-6$, find! $\frac{11}{\frac{2}{2}}=\frac{-2 x}{x=-5 \frac{1}{2}}$

$$
\begin{aligned}
& f(2) \text { ie } x=2 \\
& \text { find } y=\text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& f(2)=3(2)-2-6 \\
& f(2)=3 \cdot 4-2-6 \\
& f(2)=12-8 \\
& f(2)=4 \text { ie } y=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } f(-1) \\
& f()^{\prime}=
\end{aligned}
$$

$$
f()=3 x^{2}-x-6
$$

$$
f(-1)=3(-1)^{2}-(-1)-6
$$

$$
f(-1)=3 \cdot 1+1-6
$$

Evaluate the following expressions given the functions below:

$$
f(-1)=3+1-6
$$

$$
f(-1)=4-6
$$

$\boldsymbol{g}(\boldsymbol{x})=-3 x+1 \quad \boldsymbol{f}(\boldsymbol{x})=x^{2}+7 \quad h(x)=\frac{12}{x} \quad j(x)=2 x+9 \quad f(-1)=-2$ a. $g(10)=-3(10)+1 \quad$ b. $f(3)=\quad$ (.c. $h(-2)=12$
$g(10)=-30+1$ $9(10)=-29$
d. $j(7)=$
e. $h(a)=\frac{12}{a}$

$\not \subset$ h. Find x if $g(x)=16$
$X_{\text {i. }}$ Find x if $h(x)=-2$

$$
\#_{\text {j. Find } x} \text { if } f(x)=23
$$

$16=-3 x+1$ $+15=-3 x \quad x=-5 \quad \frac{-2}{1} \neq \frac{12}{x}$ $\frac{+15}{-3}=\frac{-3 x}{-3} \quad x=-5$

$$
\begin{aligned}
& -2 \times \frac{12}{x} \\
& -3 x=12
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{1} \frac{12}{x} \\
& -2 x=12 x=-6
\end{aligned}
$$

$$
\begin{array}{r}
23=x^{2} \pm 7 \\
-7
\end{array}
$$

$$
\frac{-2 x}{\hat{c}^{2}}=\frac{12}{-2} x=-6
$$

inge the following statements into coordinate $\overline{\bar{p} \text { points }} \stackrel{\overline{-2}}{ }$ and then plot them!
a. $f(-1)=1 \quad(\mathrm{x}, \mathrm{y}) \rightarrow(-1,1)$
b. $f(2)=7 \quad(2,7)$
c. $f(1)=-1 \quad(1,-1)$
d. $f(3)=0 \quad(3,0)$

78

Example 3:
Given this graph of the function $f(x)$

Find:

a. $f(-4)=2$
b. $f(0)=0$
~
c. $f(3)=-1.75$
d. $f(-5)=0$
if $x=-4, y=? \quad x=0, y=$

$$
\begin{array}{ll}
\text { e. } x \text { when } f(x)=-2 & \text { f. } x \text { when } f(x)=0 \\
x=? \quad y=-2 & \text { Y } y=0 \\
x=2 & \\
x=0,-5
\end{array}
$$

Example 4: $\quad X=2$
Fran collected data on the number of feet she could walk each second and wrote the following rule to model her walking rate $d(t)=4 t$.
a. What is $d(12)$? What does $d(12)$ mean? The distance fran walkS

$$
\begin{array}{ll}
d(12)=4(12) & \text { in } 12 \mathrm{sec} . \\
d(12)=48 &
\end{array}
$$

d. How can the function rule be used to indicate that a distance of 200 feet was walked?

$$
\begin{equation*}
\text { distance }=200 \mathrm{ft} \tag{t}
\end{equation*}
$$

$$
d(t)=4 t
$$

$$
\frac{200}{4}=\frac{9 \cdot t}{\frac{4}{t}}
$$

79
$t=50$

$$
\begin{aligned}
& \text { fran walked } 200 \mathrm{ft} \\
& \text { in } 50 \text { seconds. }
\end{aligned}
$$

Example 5:
Trevor rents a car for a base fee of $\$ 25$ per day plus 10 cents for each kilometre. Trevor's bill per day can be modelled by the relation $\mathrm{C}=0.10 \mathrm{n}+25$, where C is the total charge, in dollars, and n is the number of kilometers.

$$
c=0.10 n+25
$$

(a) Write the relation in function notation.

$$
C(n)=0.10 n+25
$$

(b) Make a table of values. Graph the function if Trevor drives up to 200 km in a day.

(c) If Trevor's bill was 27.50 . how many kilometres did he drive that day?

$$
\begin{aligned}
& \text { CAI }=0.10 n+25 \\
& 27.50=0.10 n+25 \\
& -25 \\
& \frac{2.50}{0.10}=\frac{0.110 n}{0.10}
\end{aligned}
$$

textbook
Assignment: Pg. 244

$$
\begin{array}{r}
\# 1-6,7 a, 8 \\
11 a b, 14
\end{array}
$$

$$
\begin{gathered}
n=2 \\
\text { He dove } 25 \mathrm{~km}
\end{gathered}
$$

$$
\begin{aligned}
& \text { b. What is }(t)=100 \text { ? What does } d(t)=100 \text { mean? } \\
& \begin{array}{lll}
100=\frac{4 t}{4} & d(t)=100 & \text { To walk } 1 \\
t=25 & 25 \mathrm{sec} .
\end{array} \\
& t=25 \\
& \text { c. How can the function rule be used to indicate a time of } 16 \text { seconds was walked? } \\
& d(t)=4(t) \text { so } d(16)=4 \times 16 \\
& \text { fran walked } 64 \mathrm{ft} \text { in } f(16)=64
\end{aligned}
$$

$1 \times 1 \times 10$
$11 a b, 14$ \qquad

80

Lesson 4 - Representing Inequalities and Domain and Range

Algebraic Inequalities: What is the meaning of each of these symbols?

For the following graphs, determine the inequality and its verbal phrase n

However in interval notation, we write this as $[1,5)$. Note the different brackets.

- Interval notation
- Has 2 types of symbols: brackets and
parentheses
$[4,12)$

$$
[] \rightarrow \text { brackets } \quad(\square) \rightarrow \text { parentheses }
$$

- Inclusive (the number \quad Exclusive (the number is

$=\equiv, \leq, \geq \quad \|,<, \geq$
- The infinity symbols $-\infty$, and 0^{+}are always written in parentheses ().

For each graph, write the inequality and interval notation

- Domain (D) is the set of all first coordinates of ordered pairs in a relation. (Input values $\rightarrow x$-values) $\quad x=1,3,5$
- Range (R) is the set of all second coordinates of the ordered pairs in a relation. (Output values $\rightarrow \mathrm{y}$-values) $\mathbb{R} \quad y=0,5,9$
Example 1: State the domain and range of each graph. Use a number line, inequality and

Homework: Determine the domain and range for the following graphs as a number line, inequality and in interval notation.

84

When writing domain and range in set notation it is required to write the set of numbers the domain and range belong to.

The following are some subsets the numbers can belong to

For example:
Given the graph to the right
Is this a function?

If we assume this relation continues to infinity (which it does), in set notation:
$\{x \mid-2 \leq x \leq 2, x \in \mathbb{R}\}$
Or $\quad\{x \mid x \geq-2$ and $x \leq 2, x \in \mathbb{R}\}$
In English, $\{x \mid-2 \leq x \leq 2, x \in \mathbb{R}\}$, mean " x, such that,

x is greater than or equal to -2 and less than or equal to 2
and x is a member of the real number." Generally, mathematicians use the first notation
The range for this graph is:

$$
y \geq-4 \gamma \quad y \leq 4
$$

$$
\{y \mid-4 \leq y \leq 4, y \in \mathbb{R}\}
$$

Assignment: Domain and Range worksheet + Nelson textbook pg. 233-235, 1-11
Quiz on Domain and Range on

Domain and Range Homework
Give the domain and range of each in set notation. Tell if it is a function. Yes or No!
1)

2) \quad| 2) |
| :--- |
| |
| \square |
3)

4)

5)

6)

$$
\int_{0}^{4}
$$

8) \leftharpoondown
9)

10)

0)

11)

12)

13)

14)

88
15)

Give the domain and range of each. Tell if it is a function.

17) $\{(5,2),(-3,1),(5,-4),(0,11)\}$
18) $\{(-6,-8),(5,1),(9,-4),(7,1),(15,0)\}$

Answers:

1. $\begin{aligned} & \mathrm{D}=\{-2,1,3,5\} \\ & \mathrm{R}=\{-3,1,2,4\} \\ & \mathrm{Yes}\end{aligned}$	2. $\begin{aligned} & \mathrm{D}=\{1\} \\ & \mathrm{R}=\{-3,0,2\} \\ & \text { No } \end{aligned}$	$\text { 3. } \begin{aligned} \mathrm{D}=\{\text { all reals }\} \\ \mathrm{R}=\{\mathrm{y} \geq 2\} \\ \mathrm{Yes} \end{aligned}$
4. $\begin{aligned} & \mathrm{D}=\{-2 \leq \mathrm{x}<3\} \\ & \mathrm{R}=\{1 \leq \mathrm{y}<4\} \\ & \mathrm{Yes} \end{aligned}$	5. $\left.\begin{array}{l}\mathrm{D}=\{\text { all reals }\} \\ \mathrm{R}=\{\text { all reals }\} \\ \text { yes }\end{array}\right\}$	6. $\begin{aligned} & \mathrm{D}=\{\text { all reals }\} \\ & \mathrm{R}=\{\mathrm{y} \geq-2\} \\ & \mathrm{yes} \end{aligned}$
$\text { 7. } \begin{aligned} & \mathrm{D}=\{-2 \leq \mathrm{x}<4\} \\ & \mathrm{R}=\{1,3,5\} \\ & \text { yes } \end{aligned}$	8. $\begin{aligned} & \mathrm{D}=\{-3 \leq \mathrm{x} \leq 2\} \\ & \mathrm{R}=\{-1 \leq \mathrm{y} \leq 1\} \\ & \text { no } \end{aligned}$	9. $\mathrm{D}=$ \{all reals $\}$ $\mathrm{R}=$ \{all reals $\}$ yes
10. $\begin{aligned} & \mathrm{D}=\{0 \leq \mathrm{x} \leq 3\} \\ & \mathrm{R}=\{0 \leq \mathrm{y} \leq 3\} \\ & \text { yes } \end{aligned}$	$\text { 11. } \begin{aligned} & \mathrm{D}=\{-3 \leq \mathrm{x} \leq-1\} \\ & \mathrm{R}=\{-3 \leq \mathrm{y} \leq 4\} \\ & \text { no } \end{aligned}$	$\text { 12. } \begin{aligned} & \mathrm{D}=\{\text { all reals }\} \\ & \mathrm{R}=\{-1,3\} \\ & \text { yes } \end{aligned}$
$\text { 13. } \mathrm{D}=\{\text { all reals }\}$	14. $\begin{aligned} & \mathrm{D}=\{-3 \leq \mathrm{x} \leq 5\} \\ & \mathrm{R}=\{0 \leq \mathrm{y} \leq 2\} \\ & \text { yes } \end{aligned}$	15. $\begin{aligned} & \mathrm{D}=\{\mathrm{x} \geq 1\} \\ & \mathrm{R}=\{\text { all reals }\} \\ & \text { no } \end{aligned}$
$\text { 16. } \begin{aligned} & \mathrm{D}=\{\mathrm{x}>-1\} \\ & \mathrm{R}=\{\mathrm{y}<3\} \\ & \text { yes } \end{aligned}$	17. $\begin{aligned} & \mathrm{D}=\{-3,0,5\} \\ & \mathrm{R}=\{-4,1,2,11\} \\ & \text { no } \end{aligned}$	18. $\begin{aligned} & \mathrm{D}=\{-6,5,7,9,15\} \\ & \mathrm{R}=\{-8,-4,0,1\} \\ & \text { yes } \end{aligned}$

Practice Quiz

For the graph of $f(x)$:

1. Find $f(2)=$
2. Find x such that $f(x)=9$

$\mathrm{x}=$

3. Find $f(0)$ the y-intercept. Give ordered pair (,)
4. What is the DOMAIN?
5. What is the RANGE?

90 . What is the RANGE?

Function Notation:

1) If $f(x)=5-7 x$, then find
a. $\quad f(-3)$
b. $3 f(2)$
c. x such that $f(x)=-2$
2. If $g(x)=3 x^{2}+5 x$, then find
a. $g(-2)$
b. $g(3)-9$
c. $-4 g(-1)$

[^0]: Learning Targets:
 \#1: I can relate a graph to a description or draw a graph given information \#2: I can determine whether a relation is linear or non-linear, and discrete or continuous
 \#3: I can write relations using five different methods (words, ordered pairs, table of values, graph and equation)
 \#4: I can determine whether a relations is a function and use and understanding function notation.
 \#5: I can determine the domain and range using words, number line, set notation, and interval notation.

